Chirping response of weakly electric knife fish (Apteronotus leptorhynchus) to low-frequency electric signals and to heterospecific electric fish.
نویسندگان
چکیده
Brown ghost knife fish (Apteronotus leptorhynchus) can briefly increase their electric organ discharge (EOD) frequency to produce electrocommunication signals termed chirps. The chirp rate increases when fish are presented with conspecific fish or high-frequency (700-1100 Hz) electric signals that mimic conspecific fish. We examined whether A. leptorhynchus also chirps in response to artificial low-frequency electric signals and to heterospecific electric fish whose EOD contains low-frequency components. Fish chirped at rates above background when presented with low-frequency (10-300 Hz) sine-wave stimuli; at 30 and 150 Hz, the threshold amplitude for response was 1 mV cm(-1). Low-frequency (30 Hz) stimuli also potentiated the chirp response to high-frequency ( approximately 900 Hz) stimuli. Fish increased their chirp rate when presented with two heterospecific electric fish, Sternopygus macrurus and Brachyhypopomus gauderio, but did not respond to the presence of the non-electric fish Carassius auratus. Fish chirped to low-frequency (150 Hz) signals that mimic those of S. macrurus and to EOD playbacks of B. gauderio. The response to the B. gauderio playback was reduced when the low-frequency component (<150 Hz) was experimentally filtered out. Thus, A. leptorhynchus appears to chirp specifically to the electric signals of heterospecific electric fish, and the low-frequency components of heterospecific EODs significantly influence chirp rate. These results raise the possibility that chirps function to communicate to conspecifics about the presence of a heterospecific fish or to communicate directly to heterospecific fish.
منابع مشابه
Stimulus frequency differentially affects chirping in two species of weakly electric fish: implications for the evolution of signal structure and function.
During social interactions, apteronotid electric fish modulate their electric organ discharges (EODs) to produce transient communication signals known as chirps. Chirps vary widely across species and sex in both number and structure. In Apteronotus leptorhynchus, males chirp far more than females and their chirps have greater frequency modulation than those of females. High-frequency chirps are...
متن کاملThe effect of difference frequency on electrocommunication: chirp production and encoding in a species of weakly electric fish, Apteronotus leptorhynchus.
The brown ghost knifefish, Apteronotus leptorhynchus, is a model wave-type gymnotiform used extensively in neuroethological studies. As all weakly electric fish, they produce an electric field (electric organ discharge, EOD) and can detect electric signals in their environments using electroreceptors. During social interactions, A. leptorhynchus produce communication signals by modulating the f...
متن کاملElectrocommunication signals in free swimming brown ghost knifefish, Apteronotus leptorhynchus.
Brown ghost knifefish, Apteronotus leptorhynchus, are a species of weakly electric fish that produce a continuous electric organ discharge (EOD) that is used in navigation, prey capture and communication. Stereotyped modulations of EOD frequency and amplitude are common in social situations and are thought to serve as communication signals. Of these modulations, the most commonly studied is the...
متن کاملAndrogen-induced changes in electrocommunicatory behavior are correlated with changes in substance P-like immunoreactivity in the brain of the electric fish Apteronotus leptorhynchus.
The hormonal regulation of sex differences in electrocommunicatory behavior and brain substance P-like immunoreactivity (SPI-ir) were examined in the weakly electric fish, Apteronotus leptorhynchus. This animal modulates its electric organ discharge (EOD) to produce discrete electric social signals (chirps), which function in aggressive and reproductive displays. Males readily chirp in response...
متن کاملArginine vasotocin modulates a sexually dimorphic communication behavior in the weakly electric fish Apteronotus leptorhynchus.
South American weakly electric fish produce a variety of electric organ discharge (EOD) amplitude and frequency modulations including chirps or rapid increases in EOD frequency that function as agonistic and courtship and mating displays. In Apteronotus leptorhynchus, chirps are readily evoked by the presence of the EOD of a conspecific or a sinusoidal signal designed to mimic another EOD, and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 213 Pt 13 شماره
صفحات -
تاریخ انتشار 2010